Adults Pediatrics

Leading rehabilitation facilities worldwide rely on robotic rehabilitation, as it offers many advantages for the patient, therapist and institution.

FOR A BE TT ER LIF E

Entry Point to the World of Robotic Gait Therapy

Accessible, affordable rehabilitation technology
Short set-up times and supervision by one therapist
Based on clinical heritage of end-effector training

Leading rehabilitation facilities worldwide rely on robotic rehabilitation, as it offers many advantages for the patient, therapist and institution.

www.rehatechnology.com
More Value for Your Therapy Environment

NexStep is an easy to use device with core rehabilitation functions enabling the most efficient therapy for neurological movement disorders of the lower extremities. It focuses on the needs of the patient, as well as on therapists and institutions that want to start using robot assisted therapy methods in their daily routines or are looking to complement their existing therapy concept.

Patient Comfort & Safety
- Intuitive and quick patient set-up
- Dynamic control over body position and movement
- Unrestricted access to the patient during therapy
- Low risk of injuries
- Seamless adaptation of gait parameters

Therapy Effectiveness
- High number of repetitions per session
- Maximizing therapy time
- Simple change-over from adult to pediatric application
- Retrievable patient specific settings

Institution Opportunities
- Increased patient throughput
- Cost effective and optimized resource allocation
- One therapist supervision
- Multiple patient indications
- Wide patient range including pediatrics

Proven Therapy Technology

The NexStep robotic gait trainer is based on the proven end-effector therapy concept. Publications show clinical evidence that patients who receive end-effector gait therapy have a significant higher rate of independent walking and are more likely to achieve superior gait ability.

Hesse et al. Robot-assisted practice of gait and stair climbing in nonambulatory stroke patients. JRRD, 2012
Hesse et al. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion. NeuroRehabilitation, 2013

Technical Data

<table>
<thead>
<tr>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
<th>Power supply</th>
<th>Max. step cadence</th>
<th>Max. step length</th>
<th>Max. Speed</th>
<th>Ankle angle range</th>
</tr>
</thead>
<tbody>
<tr>
<td>310 cm</td>
<td>204 cm</td>
<td>240 cm</td>
<td>800 kg</td>
<td>110 / 230V</td>
<td>70 steps / min</td>
<td>55 cm</td>
<td>2.3 km/h</td>
<td>-80° / +80°</td>
</tr>
</tbody>
</table>

For additional information visit www.rehatechnology.com